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Abstract

Background

There is a broad range of known effects of animal contact on human mental and physical

health. Neurological correlates of human interaction with animals have been sparsely inves-

tigated. We investigated changes in frontal brain activity in the presence of and during con-

tact with a dog.

Methods

Twenty-one healthy individuals each participated in six sessions. In three sessions, partici-

pants had contact with a dog, and in three control sessions they interacted with a plush ani-

mal. Each session had five two-minute phases with increasing intensity of contact to the dog

or plush animal from the first to the fourth phase. We measured oxygenated, deoxygenated,

and total hemoglobin and oxygen saturation of the blood in the frontal lobe/frontopolar area

with functional near-infrared spectroscopy (SenSmart Model X-100) to assess brain activity.

Findings

In both conditions, the concentration of oxygenated hemoglobin increased significantly from

the first to the fourth phase by 2.78 μmol/l (CI = 2.03–3.53, p < .001). Oxygenated hemoglo-

bin concentration was 0.80 μmol/l higher in the dog condition compared to in the control con-

dition (CI = 0.27–1.33, p = .004). Deoxygenated-hemoglobin concentration, total

hemoglobin concentration, and oxygen saturation showed similar patterns.

Conclusion

Prefrontal brain activation in healthy subjects increased with the rise in interaction closeness

with a dog or a plush animal. Moreover, interaction with a dog stimulated more brain activity

compared to the control condition, suggesting that interactions with a dog can activate stron-

ger attentional processes and elicit more emotional arousal than interacting with a nonliving

stimulus.
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1 Introduction

Although the effects of contact with animals on human mental and physical health have

received increasing attention [1–5], the neurophysiological correlates of these effects are not

yet fully understood [6, 7]. These correlates are, however, highly relevant to understanding the

mechanisms underlying human–animal relationship [8–11] and to designing effective animal-

assisted interventions. Authors of several studies have reported that positive interaction with a

dog reduces stress parameters, such as blood pressure, heart rate, or cortisol level [12–14], and

leads to an increase of neurochemicals associated with bonding or affiliation, such as β-endor-

phin, oxytocin, and prolactin [15–17]. However, the results for these parameters remain

inconclusive [13, 18, 19].

Investigations into neurological correlates in the context of human–animal interaction

are scarce. Initial studies have investigated neurological reactions to interactions with ani-

mals using neuroimaging techniques [20–27]. Most of these studies presented images of

animals, whereas only a small number of investigations have addressed the effects of real

animals. A positron-emission-tomography (PET) study observed that brain areas associated

with stress and sympathetic arousal were less activated in the presence of a familiar dog

than in a relaxing condition [23]. Other investigators have observed lateralization with

greater activity in the right frontopolar area while petting a horse compared to petting a

plush animal, seeing a horse, or seeing a plush animal [24]. Another study measuring hemo-

dynamic response found that participants reacted with activation in the left inferior frontal

gyrus while petting a cat [25]. Moreover, children showed higher activity in the prefrontal

cortex in an attention task after interacting with a dog than after interacting with a robot

dog [26]. Similarly, in a small pilot study, participants had a stronger brain reaction to a live

animal than to a mechanical toy animal [27]. While these studies provide first insights into

neurological correlates of the human–animal interaction, additional research is needed to

understand what happens in different forms of human–animal interactions. The knowledge

gained will be crucial for conducting effective animal-assisted interventions [28]. Dogs are

the most common animals used in animal-assisted interventions [4, 29, 30]. The aim of this

study was to investigate neurological correlates of different forms of human–dog contact in

an animal-assisted intervention setting using a strong study design. To ensure that the

results would be as valuable as possible for practical application, we investigated the reac-

tions of the participants in an animal-assisted intervention setting in a clinic and involving

direct contact and interaction with a dog. This also enabled us to control for different

amounts of contact with the dog.

Interacting with an animal is a social situation that is emotionally relevant to most people

[7, 31–34]. Several reviews have identified the prefrontal cortex as the key region for different

aspects of social cognitive processing, such as theory of mind/mentalizing [35] and under-

standing self and others [36]. Activity in the prefrontal cortex is thus important for investigat-

ing the underlying mechanisms of human–animal interactions.

Our study aimed to investigate brain activation in the prefrontal cortex of healthy sub-

jects with functional near-infrared spectroscopy (fNIRS) in a controlled trial. We compared

different forms of interaction with a dog and different forms of interaction with a plush

animal. We expected, first, that the increase of closeness in contact with a dog or plush ani-

mal would correlate with an increased amount of stimulation and therefore also with

increased brain activity. Second, we hypothesized that participants would exhibit higher

brain activity in the dog condition compared to the control condition with the plush

animal.
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2 Materials and methods

2.1 Study design

The study had a controlled, within-subject crossover design with repeated measurements. Par-

ticipants were measured during six standardized sessions (1–6) consisting of three sessions

with a live dog and three control sessions with a plush animal. The six sessions took place

within 2 weeks. The sequence of the conditions within these six sessions was influenced by the

presence of the dog and therefore only partly randomized. The study design was approved by

the local ethics committee, Ethics Commission Northwest and Central Switzerland (Project ID

2017–00540), and by the Veterinary Office of the Canton of Basel-Stadt, Switzerland (No.

2713) and was registered at clinicaltrials.gov (NCT03341325). The study design followed the

Animals (Scientific Procedure) Act 1986, European Directive EU 2010/63, and the guidelines

for handling animals in research as outlined by the Association for Studies on Animal Behav-

ior and the Society for Animal Behavior. All sessions were conducted according to the guide-

lines of the International Association for Human–Animal Interaction Organizations and the

Helsinki guidelines [37, 38]. We planned to compare the results of this study with a study pop-

ulation of patients with severe disorders of consciousness in a future trial, so the study design

complied with the requirements for measuring a group of patients with severe disorders of

consciousness.

2.2 Participants

Twenty-one healthy subjects (10 women, 11 men) participated in this study. Participants were

over 18 years old and without allergies or phobias toward dogs. They were recruited with flyers

at the Faculty of Psychology at the University of Basel and via an advertisement on the univer-

sity’s website. We obtained written informed consent from every participant before the study

started. The sample size was determined a priori based on data from a previous study [39] and

with regard to the pilot character of this study.

2.3 Procedure

The sessions were held in a room at the neurorehabilitation center REHAB Basel in Switzer-

land from February 2018 until July 2018. During the experiments, the participants sat upright

on a Bobath therapy couch. They faced a white wall located at a distance of 1.5 m. The study

staff attached two fNIRS sensors to measure oxygen saturation on the participants’ foreheads.

Three of the six sessions per participant were conducted in the presence of a dog and three

with a plush animal (see Fig 1). The participants therefore had a first, second, and third contact

with both the dog and the plush animal. All sessions were videotaped, and heart rate and elec-

trodermal activity were recorded. Each session consisted of five 2-minute phases, which were

always conducted in a similar way and in the same order in both the dog and plush-animal

conditions. Before each phase, the study staff verbally instructed the participant according to a

standardized protocol. The first phase served as a baseline where the participant looked

straight at the white wall and relaxed (neutral 1). In the next phase, the participant watched a

dog or a plush animal from a distance of 1 m (watching). The dog or plush animal was placed

or asked to lie on a mat and a blanket on a height-adjustable table. Then the dog lay down next

to the participant on the couch or the plush animal was placed on the participant’s thigh. The

participant could passively feel the animal but was not yet allowed to pet it (feeling). Next, the

participant petted the dog or the plush animal (petting). Finally, there was a second neutral

phase where the participant again looked at the white wall while the dog or the plush animal

was out of sight (neutral 2). Each phase concluded after 2 minutes, and then there was a short
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break in which the study staff prepared the room for the next phase. Interactions between each

participant and the dog or the plush animal were standardized and comparable regarding the

amount of contact.

For every participant, we scheduled three of the sessions in the morning and three in the

afternoon to control for time of day. The order of the phases was not counterbalanced because

the same design was also used for patients with severe disorders of consciousness. These

patients need time and a lot of context to understand a situation. A random order with a sud-

den increase of contact to the animal would not be ethically justifiable. For the same reason, it

was not possible to measure a pretask and posttest baseline for each phase.

2.4 Dogs

The dogs participating in the study were used to human contact and trained to work with

patients in a hospital setting. The dogs were a female Jack Russel (6 years of age), a female

Goldendoodle (4 years of age), and a female Golden Retriever (4 years of age). Each dog partic-

ipated in a maximum of two sessions in a row. The dogs and their owner were in the room

before the sessions started, which enabled them to become acquainted with the room and to

feel safe. The dog owner was present throughout the session and was responsible for handling

the dog but was instructed not to interact with the participant during the measurements. The

dogs were trained to lie silently on the table and beside the participant in contact with the par-

ticipant’s thigh, but they could choose their position themselves. Owners monitored their dogs

for signs of stress and predetermined stop criteria. Due to the highly standardized situations

Fig 1. Study procedure.

https://doi.org/10.1371/journal.pone.0274833.g001
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and interaction, the behavior of the dog was comparable between the sessions within and

between participants.

2.5 Plush animal

For the control sessions, we used a lion plush animal. The plush animal (58 × 40 × 20 cm) con-

tained in its body a hot water bottle that was filled with warm water before the sessions started

to control not only for the sensation of soft fur but also for the body temperature and weight of

a dog. We introduced the plush animal to participants as “Leo.”

2.6 Functional near-infrared spectroscopy

We chose fNIRS to measure the response in the prefrontal cortex as it is particularly suited for

investigating the neuronal correlates of such a complex social situation of human–animal

interaction. fNIRS has been used as a noninvasive technique to measure brain activity within

the context of human–animal interactions [24, 25, 27, 40, 41]. Compared to functional mag-

netic-resonance imaging (fMRI) or PET, participants are not confined to a scanner but can sit

or stand during measurements. This makes the test situation more comparable to clinical situ-

ations. fNIRS also has other advantages: there are no disturbing sounds, and the device is easy

to handle. fNIRS is a vascular-based neuroimaging technology that measures the oxygen satu-

ration of hemoglobin and changes in total hemoglobin concentration (tHb) based on the char-

acteristic hemoglobin-absorption spectra in the near-infrared range. This technology relies on

the well-known tight neurovascular coupling, which induces changes in oxygen saturation and

tHb in response to neuronal activity. An increase in oxygenated hemoglobin (O2Hb) in the

region of an activated cortical area mirrors increased brain activity [42].

We recorded percent oxygen saturation (%) and tHb (g/dl) in the prefrontal cortex using a

Nonin fNIRS device (SenSmart Model X-100). Two sensors of the device (Model 8004CA Sen-

sors–Adhesive) were placed right and left of the midline on the forehead as close to the hairline

as possible and then attached with an adjustable band. This corresponded to locations F1, F3,

F2, and F4 on the frontopolar area according to the international 10–20 system and to the

Brodmann areas 9, 10, and 46. The wavelength of the infrared light was 730, 760, 810, and 880

nm, and measurements were recorded at a frequency of 0.25 Hz. After recording, data were

transferred to a laptop using SenSmart software (version 1.0.1.0).

Within this study, we also measured other physiological endpoints such as heart rate, heart-

rate variability, and skin conductance. These data will be published separately.

2.7 Data processing and analysis

We converted the data from g/dl to μmol/l based on the molar mass of hemoglobin of 64458 g/

mol. We calculated the concentration of O2Hb and HHb from raw data. To exclude unreliable

data due to measurement errors, two raters independently rated plots of the data for reliability.

The raters were blinded for the condition. Conflicts were resolved by a third rater (R. M.).

For all included data, we calculated the mean concentration of O2Hb, HHb, and tHb and

mean oxygen saturation in each phase. To do so, we cut the data from one session into seg-

ments of five 2-minute phases at the markings. The data between the phases was not used. We

were interested in changes from phase to phase, so we subtracted the mean of the first phase

from each following phase within the same session for each participant.

O2Hb reflects the neuronal-discharge frequency, while HHb reflects the quantity of

recruited neurons [43]. We chose O2Hb as the primary outcome because O2Hb more directly

reflects task-related cortical activation than does HHb [44]. HHb, tHb, and oxygen saturation

served as secondary outcomes. For the primary and secondary outcomes, we conducted
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prespecified linear mixed-effect models and used the mean difference as the effect size. Within

the models, condition and phase were used as fixed effects, and an intercept for the participant

was used as the random effect. We conducted the same models again with visibility of the dog

owner as a fixed effect.

We conducted explorative analyses because repetition of contact with the dog or the plush

animal seemed to influence the outcome. Within these nonprespecified linear mixed-effect

models, condition and contact (first, second, or third contact between participant and dog or

plush animal) were used as fixed effects. Moreover, we included an interaction term and an

intercept for the participant as the random effect.

We visually checked the normality (q-q plot, histogram of residuals), linearity, and homo-

scedasticity (residuals vs. fitted plot), and influential outliers (leverage and Cook’s distance).

Leverage was checked with the R package influence.ME [45]. The significance level was set at

.05. All analyses were conducted with R 4.1.0 [46] and R package lme4 [47].

3 Results

Of the 21 participants measured between January and July 2018, one participant dropped out

after one session. We conducted 119 of the 126 planned sessions (Fig 2). Of these 119 sessions,

we excluded data from one channel for 55 sessions and from both channels for 10 sessions due

to low data quality (Fig 2). Six of these 10 completely removed datasets originated from one

participant who dropped out of the analysis, while the other removed datasets were distributed

among different participants. We thus analyzed 108 sessions (53 dog conditions, 55 plush-ani-

mal conditions) of 19 participants with at least one of the two channels available.

These 19 participants compromised nine women and 10 men. The mean age was 32.4 years

(SD = 12.8) and did not differ between the sexes (estimate = 2.2, CI = −15.4–11.1, p = .732).

On average, we analyzed 2.89 control sessions and 2.84 dog sessions per participant. The num-

ber of analyzed sessions per participant did not differ between the conditions (M = 2.87,

SD = 0.34; estimate = −0.05, CI = −0.18–0.28, p = .642). The first session was significantly

more often the dog condition (14/19, p = .025), and the second session was significantly more

often the control condition (14/18, p = .025). In sessions three to six, the number of sessions

per condition did not differ significantly. In two-thirds of the sessions in the dog condition,

the participant could see the dog owner during the measurement. No adverse or unintended

effects in participants or in the involved dogs occurred during data collection.

3.1 Primary analysis

With increased stimulation, oxygenated hemoglobin (O2Hb) in the prefrontal lobe increased

significantly from phase neutral 1 to phase petting by 2.78 μmol/l (CI = 2.03–3.53, p< .001).

After removal of the stimulation in phase neutral 2, O2Hb stayed constant and was still signifi-

cantly higher compared to phase neutral 1 (estimate = 2.91 μmol/l, CI = 2.16–3.65, p< .001).

O2Hb was 0.80 μmol/l higher in the presence of the dog compared to in the presence of the

plush animal (CI = 0.27–1.33, p = .004). The difference between the conditions was highest in

the phase petting (Fig 3A). This result was not influenced by the visibility of the dog owner.

3.2 Secondary analysis

3.2.1 Deoxygenated hemoglobin. When stimulation increased, deoxygenated hemoglo-

bin (HHb) in the prefrontal lobe decreased significantly from phase neutral 1 to the petting

phase by 1.23 μmol/l (CI = −1.75 to −0.72, p = .003). After removal of the stimulation in phase

neutral 2, HHb stayed constant and was still significantly lower compared to phase neutral 1

(estimate = −1.20 μmol/l, CI = −1.72 to −0.69, p = .005).
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HHb tended to be lower in the presence of the dog compared to in the presence of the

plush animal (estimate = -0.35 μmol/l, CI = −0.71–0.02, p = 0.064). The difference was highest

in phase neutral 2 (Fig 3B). This result was not influenced by the visibility of the dog owner.

3.2.2 Total hemoglobin. When stimulation increased, total hemoglobin (tHb) in the pre-

frontal lobe increased significantly from phase neutral 1 to the petting phase by 1.54 μmol/l

(CI = 1.08–2.01, p< .001). After removal of the stimulation in phase neutral 2, tHb stayed con-

stant and was still significantly higher compared to phase neutral 1 (estimate = 1.70 μmol/l,

CI = 1.24–2.17, p< .001).

Fig 2. Flow diagram of the study.

https://doi.org/10.1371/journal.pone.0274833.g002
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The concentration of tHb was significantly higher by 0.45 μmol/l in the presence of the dog

compared to in the presence of the plush animal (CI = 0.12–0.78, p = .008). The difference was

highest in the petting phase (Fig 3C). In the dog condition, tHb was lower when the participant

could see the dog owner than when the dog owner was out of sight (estimate = −0.84, CI =

−1.33 to −0.33, p< .001). The results of the other factors in the model, including visibility of

the dog owner, remained unchanged.

3.2.3 Oxygen saturation. When stimulation increased, oxygen saturation in the prefron-

tal lobe increased significantly from phase neutral 1 to the petting phase by 0.93% (CI = 0.64–

1.22, p< .001). After removal of the stimulation in phase neutral 2, saturation stayed constant

and was still significantly higher compared to phase neutral 1 (estimate = 0.97%, CI = 0.68–

1.27, p< .001).

Fig 3. Effects of condition and phase on O2Hb, HHb, tHb, and oxygen saturation. (A) O2Hb, (B) HHb, (C) tHb, and (D) oxygen saturation. Error

bars denote confidence interval. Data is shown as relative change from phase neutral 1.

https://doi.org/10.1371/journal.pone.0274833.g003

PLOS ONE fNIRS of human–dog contact

PLOS ONE | https://doi.org/10.1371/journal.pone.0274833 October 5, 2022 8 / 19

https://doi.org/10.1371/journal.pone.0274833.g003
https://doi.org/10.1371/journal.pone.0274833


Oxygen saturation was significantly higher by 0.21% in the presence of the dog compared

to in the presence of the plush animal (CI = 0.00–0.42, p = .047). The difference was highest in

phase neutral 2 (Fig 3D). The visibility of the dog owner had no effect.

3.3 Explorative analysis

During the first contact (first session), there was no relevant difference in O2Hb between the

dog condition and the plush-animal condition (estimate dog = 2.15 μmol/l, estimate plush

animal = 2.60 μmol/l). We observed a significant interaction, which indicates that with

repeated contact over time, there was an increasing difference between the dog condition and

the plush-animal condition (second contact: p = .001, third contact: p = .023, Table 1, Fig 4A).

There was no relevant difference in HHb between the dog condition and the plush-animal

condition during the first contact (dog = −0.98 μmol/l, plush animal = −1.16 μmol/l). We

observed a significant interaction between the condition and number of contacts with an effect

on HHb in the second contact but not in the third (second contact: p = .002, third contact: p =

.695, Table 1, Fig 4B).

During the first contact, there was no relevant difference in tHb between the dog condition

and the plush-animal condition (dog = 1.17 μmol/l, plush animal = 1.44 μmol/l). We observed

a significant interaction effect on tHb, which indicates that the difference between the dog con-

dition and the plush-animal condition increased with repeated contact over time (second con-

tact: p = .053, third contact: p = .001, Table 1, Fig 4C).

There was no relevant difference in oxygen saturation between the dog condition and the

plush-animal condition during the first contact (dog = 0.77%, plush animal = 0.80%). We

observed a significant interaction between the condition and number of contacts with an effect

on oxygen saturation in the second contact but not in the third (second contact: p = .010, third

contact: p = .823, Table 1, Fig 4D).

4 Discussion

This study compared the prefrontal brain activity of healthy adults during contact with a

dog and contact with a plush animal. Prefrontal activity increased with increased intensity

of contact with a dog or a plush animal. This confirms our first hypothesis that more stimu-

lation correlates with higher brain activity. It also corroborates previous studies linking

closer contact with animals or control stimuli with increased frontal brain activation [24,

25, 27].

The participants had higher prefrontal brain activity when they interacted with a dog than

when they interacted with a plush animal. This confirms our second hypothesis. In the pres-

ence of the dog, O2Hb, tHb, and oxygen saturation were significantly higher while HHb

tended to be lower compared to the control condition. This pattern indicates increased oxygen

consummation in prefrontal areas and thus higher brain activation in the presence of a dog

[48, 49]. This result is in line with previous studies. An fNIRS pilot study with patients in a

minimally conscious state and healthy controls found that three of four participants showed a

higher hemodynamic response when stroking a live animal (dog, rabbit, or guinea pig) com-

pared to stroking a mechanical toy [27]. Children who underwent a 20-min session with a

therapy dog after surgery showed faster electroencephalogram diffuse beta activity, while chil-

dren in the control group who received standard postoperative care showed no beta activity

[41]. The passive infrared hemoencepahlography signal of children who performed an atten-

tion test was significantly higher after the interaction with a real dog compared to after the

interaction with a robotic dog [26].
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4.1 Comparison with other studies

We found that prefrontal brain activity increased with a rise in the intensity of contact with a

dog or a plush animal. From watching the animal to feeling it passively to actively petting the

animal, the interactional closeness increased and, with it the intensity of stimulation as well as

the number of senses involved. This led to an increase in brain activation. We detected the

same pattern in a pilot study with a similar study design and comparable forms of contact to

an animal [27]. In line with this, another study revealed higher frontopolar activity when

Table 1. Marginal effects of condition by number of contacts.

95% CI

Estimate Lower limit Upper limit

O2Hb

Dog condition

First contact 2.15 1.35 2.95

Second contact 3.43 2.62 4.25

Third contact 3.36 2.52 4.19

Plush-animal condition

First contact 2.60 1.78 3.41

Second contact 1.62 0.81 2.44

Third contact 2.25 1.45 3.05

HHb

Dog condition

First contact −0.98 −1.53 −0.43

Second contact −1.70 −2.26 −1.14

Third contact −1.31 −1.89 −0.74

Plush-animal condition

First contact −1.16 −1.72 −0.60

Second contact −0.44 −1.00 0.12

Third contact −1.32 −1.87 −0.76

tHb

Dog condition

First contact 1.17 0.66 1.68

Second contact 1.74 1.22 2.26

Third contact 2.04 1.50 2.57

Plush-animal condition

First contact 1.44 0.92 1.96

Second contact 1.18 0.66 1.70

Third contact 0.94 0.42 1.45

Oxygen saturation

Dog condition

First contact 0.77 0.47 1.08

Second contact 1.10 0.78 1.41

Third contact 0.98 0.66 1.30

Plush-animal condition

First contact 0.80 0.49 1.11

Second contact 0.45 0.13 0.76

Third contact 0.95 0.64 1.26

Marginal effects were estimated by condition and contact number, and an intercept for participant as random effect.

https://doi.org/10.1371/journal.pone.0274833.t001
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participants stroked a plush animal or a miniature horse compared to just seeing them [24].

Moreover, stroking a cat stimulated higher activation of the inferior frontal gyrus compared to

just touching a cat [25].

We observed clear differences in brain activity in the presence of the dog compared to the

plush animal. This contrasts with a study reporting that healthy participants had similar activa-

tion patterns of the inferior frontal gyrus when petting a cat or a plush animal [25]. That study

also noted that female and male participants showed different activation patterns. A PET study

observed deactivation in the left middle frontal gyrus, the right fusiform gyrus, the left puta-

men, and the thalamus in healthy participants during the presence of a familiar dog compared

to a resting condition [23]. The authors suggested that this deactivation signaled a reduction in

Fig 4. Effects of condition and number of contacts on O2Hb, HHb, tHb, and oxygen saturation. (A) O2Hb, (B) HHb, (C) tHb, and (D) oxygen

saturation. Error bars denote confidence intervals. Data are shown as relative change from phase neutral 1. The data for phase neutral 1 are not included

in the presented means.

https://doi.org/10.1371/journal.pone.0274833.g004
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emotional stress induced by the presence of the familiar dog. These results cannot be directly

compared with our results, because fNIRS cannot reach areas like the putamen or the thala-

mus. Nevertheless, the tasks in our design might have been more activating and our imaging

technology less stressful.

Other studies identified lateralized activation patterns in frontal areas during petting a

horse or a cat compared to a plush animal [24, 25]. For example, participants exhibited laterali-

zation in the right frontopolar cortex while petting a real horse compared to no lateralization

while petting a plush horse[24]. The authors attributed the lateralized activity to differences in

function of the left and right frontal regions. We did not test for lateralization in the present

study, but visual inspection of our data does not suggest lateralization. However, future studies

should address the possibility of lateralization.

Summing up, the current literature indicates that frontal brain activation patterns in

humans correlate with the level of interaction with animals. Our results show that this is also

the case with a live dog compared to a plush animal and that the intensity of interaction is rele-

vant. Looking at a dog correlates with the lowest frontal activity, while passive contact with

more and active stroking correlates with the highest frontal activity.

4.2 Brain activity across sessions

In the second neutral phase, brain activation did not return to the level of the first neutral

phase. We assume that activation persisted in both conditions and did not decline as quickly

as expected. We therefore assume that the subjects were basically more activated in the second

neutral phase than in the first.

We also found a pattern in O2Hb and tHb levels indicating that prefrontal brain activity

increased with repeated contact to the dog while it did not increase with repeated contact in

the plush-animal condition. There seems to be a difference, especially between the first and the

second contact with the dog suggesting that familiarity might play a different role in interac-

tions with live and plush animals. However, the other two outcomes (HHb and oxygen satura-

tion) did not show an increase with repeated contact and do not support this hypothesis. This

result of this explorative analysis therefore needs to be further investigated in future studies.

4.3 Hypothesis about underlying mechanisms

We have different hypotheses explaining our result of higher activation in the dog condition

compared to the plush-animal condition. The prefrontal cortex is known to be involved not

only in executive functions such as attention control, working memory, and problem-solving

but also in social and emotional processes [50, 51]. It has reciprocal connections with brain

regions that are involved in emotional processing such as the amygdala and higher-order sen-

sory regions within the temporal cortex [51].

Social interactions with animals are highly emotionally relevant for a majority of people [7,

31–34]. We thus hypothesize that interacting with the dog led to higher emotional involvement

in the participants compared to interacting with the plush animal. This higher emotional

involvement correlates with higher frontal activity. Previous studies using neuroimaging or

behavioral outcomes support this hypothesis of higher emotional arousal by live animals [21,

39, 52–55].

Potential higher emotional involvement might in parallel also lead to more attention for

and a stronger focus on the dog compared to the plush animal. Several authors have shown

that interactions with animals can promote attention and activate attention networks [20, 21,

26, 56, 57]. Attentional processes such as attentional set-shifting or attention monitoring are

located in the frontal cortex [50, 58, 59].
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Another consequence of higher emotional arousal or of touching a live dog can be

increased physiological arousal [60]. This arousal can be related to a positive state, but interact-

ing with a dog could also cause higher stress than interacting with a plush animal. Further

parameters such as heart rate or skin conductance are needed to distinguish physiological

arousal from other processes such as emotional involvement and attention. Further, the

increase in activation might also have been caused by a greater cognitive load as a dog is a

more complex stimulus than a plush animal [61, 62]. A last hypothesis might be that motor

control played a role [63, 64] as stroking a live dog might demand different motor adaption in

the participants.

In sum, there are several possible explanations for our results that would benefit from being

investigated in the future. Based on the recent literature, we hypothesize that emotional

involvement might be a central underlying mechanism of the neurological frontal brain corre-

lates of human–animal interaction. We therefore suppose that the increase in brain activity in

the dog condition over the three contacts might be explained based on a developing relation-

ship between the participant and the dog. Familiarity and a relationship with the dog could

have raised the salience of the dog, kept the participant’s attention on the dog’s behavior, and

increased emotional arousal during the experiment. An fMRI study on pet attachment found a

correlation between pet attachment and brain activity in areas involved in increasing attention

and attentional load [21].

4.4 Implications for clinical practice

It is important that future research tries to replicate our findings because they could have

important implications for clinical practice such as animal-assisted therapy. Our results indi-

cate that interactions with a dog might activate more attentional processes and elicit stronger

emotional arousal than comparable nonliving stimuli. Moreover, it seems that especially close

and active physical contact to a familiar dog might promote social attention in humans. This is

especially relevant for patients with deficits in motivation, attention, and socioemotional func-

tioning. High involvement is a crucial factor for learning, as has been shown in several studies

[65, 66]. For example, it has been shown that emotional relevance is central [67].

If patients with deficits in motivation, attention, and socioemotional functioning show

higher emotional involvement in activities connected to a dog, then such activities could

increase the chance of learning and of achieving therapeutic aims. These hypotheses should be

investigated in future studies, as they suggest that integrating animals into therapeutic inter-

ventions might be a promising approach for improving emotional involvement and attention.

4.5 Limitations and strengths

Blinding was not possible due to the nature of the study. Moreover, randomizing the sequence

of the conditions was not completely possible because of the irregular presence of the dogs. It

should also be noted that there was an additional person present during the presence of the

dog. The dog owners did not interact with the participants during the measurements, but par-

ticipants could see the dog owners in two-thirds of the sessions. For most of the outcomes, visi-

bility of the dog owner had no effect, but this factor should be controlled in future studies.

Moreover, we did not assess attitudes toward animals. The sample size reflects the pilot charac-

ter of the study. The results thus must be interpreted carefully.

While fNIRS technology has several advantages, measurements of regional cerebral oxygen

saturation can be affected by skull thickness, gyration, hemoglobin concentration, or extracra-

nial blood flow [68, 69]. We decided to use fNIRS because it allowed the study to take place in

a natural environment and did not produce any sounds that could irritate the participants or
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the dogs. Since we repeatedly measured the outcomes for each condition and had a within-

subject design where each participant served as their own control, these issues are limited. In

addition, the probe design with a multidistance approach naturally reduces sensitivity to extra-

cranial effects [70]. Drifts are also not likely because the fNIRS device corrects for that. Further,

O2Hb concentration and oxygen saturation show the same pattern, which would not be the

case if there was a drift. It could be argued that we should have detrended for the difference

from the first to the second neutral phase. But the carry-over effect in the second neutral phase

is not the same in the dog condition and the plush-animal condition. Detrending could thus

have covered up effects that we assume reflect real changes.

The strengths of the study are that we investigated the effects of live dogs on neuronal acti-

vation instead of dogs presented via photos or videos and that we controlled for different levels

of closeness and physical contact between the participant and the dog or the plush animal. We

also carefully controlled the environmental factors in the room, the wording of the instruc-

tions, and the time of day of the sessions. Interactions between participants and the dog or the

plush animal were standardized and kept as similar as possible. With regard to the plush ani-

mal used in the control condition, we controlled for tactile inputs such as its fur, warmth, and

weight, and it was named and called by a name just as the dogs were called by a name in the

study.

4.6 Future research

Future studies should take into account participants’ characteristics like gender, pet owner-

ship, and attitude toward animals. It has been shown that participants who loved horses exhib-

ited lateralization while petting a horse. In contrast, participants who only “kind of liked”

horses did not exhibit lateralization [24]. A study on brain activity during cat petting indicated

a gender difference [25], and in an fMRI study, pet owners showed greater activation than

non-pet owners while looking at images of unfamiliar pets [21]. Future research should repli-

cate our findings with larger sample sizes and different participants. Moreover, the effects of

direct interaction with a live dog could be investigated with other neuroimaging techniques

that can measure brain activity in different brain areas simultaneously. It is important to fur-

ther understand the effect of familiarity and relationship as well as of the type of interaction

with the dog. To do so, future studies could use different interactions such as speaking to the

dog or include reciprocal interactions such as playing with the dog. Familiarity and relation-

ship should be systematically controlled by involving unfamiliar dogs, unfamiliar dogs with

repeated contact, and participants’ own pet dogs. It would be interesting to compare the effects

of different animal species or of different features of dogs’ appearances and to use different

control conditions. Obtaining subjective ratings of the different interactions such as perceived

pleasantness, stress, and relationship with the dog or plush animal should be introduced in the

future. Moreover, imposing a concurrent cognitive task might be useful to see if the presence

of a real dog has facilitating effects on behavioral performance. Moreover, it is important to

test our hypotheses regarding clinical relevance. Future studies should involve patients with

deficits in motivation, attention, and socioemotional functioning and investigate if the same

results can be found regarding brain activity and also look at therapeutic outcomes such as

achieving rehabilitation goals.

With regard to standardization, we recommend implementing a manipulation test to check

for motor functions, to randomize the phases, and to control for the number of people in the

room, the position of the dog owner, and the handedness of the participants. If it is possible,

we would recommend implementing a pretask and posttask baseline. The length of the neutral

phase should be longer to avoid carry-over effects.
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5 Conclusion

The present study demonstrates that prefrontal brain activity in healthy subjects increased

with a rise in interactional closeness with a dog or a plush animal. Moreover, participants had

higher brain activation in the presence of a dog compared to in the presence of a plush animal.

This indicates that interactions with a dog might activate more attentional processes and elicit

stronger emotional arousal than comparable nonliving stimuli. Our results also suggest that a

relationship with the dog might be a crucial factor. The results are clinically relevant for

patients with deficits in motivation, attention, and socioemotional functioning. Integrating

animals into therapeutic interventions might therefore be a promising approach for improving

emotional involvement and attention.
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